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1.0 Introduction

Suppose we wish to estimate P(X -c) where X is a continuous random

variable and c is some constant. That is we wish to estimate F(c) where F

is the cdf underlying X. Since F is unknown, a model cdf F(x;Q) il; selected,

and the vector of parameters Q = (01,02, .. Q p ) may he estimated from a random

sample. In this situation some care should be taken with respect to the

method of estimation of 0. Since we do not know the form of F and we have

only postulated the form is G(x;g), we should use a method of estimation of 0

which is robust. That Is, the method by which 0 is estimated should result

in a value of G(x; ) which is as close as possible to F(x) even when G(x;g)

is different from F(x).

Also, as any applied statistician knows, data samples often contain

some contamination or outliers which are sometimes difficult to detect. The

estimation technique used should be robust in the sense that it shoud not be

too sensitive to the contamination.

2.0 Methodology

Samples of size N were generated from various underlying distributions in

the following manner. First, k random samples of size N were generated from

the unit interval with yij being the i t h individual in the jth sample. Using
-l

x.. = F (y .), k random samples . .... xN. from F(x) were obtained.i]ij 1 X .1 x2 _1 Y N

We considered four different families of cases as follows:

(i) F(x) is a cdf such as logistic, Weibill, Laplace, etc.

(ii) F(x) is a mixture of two different normal cif's

(Iii) F(x) is a normal cdf with contamination

(iv) F(x) Is. a Wetbull distribution with contamination and without

contamination.
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We used the normal model for G(x;9) in (i), (ii), (ii), and in case (iv)

a Weibull model for G(x;@) was used. In all of the above cases we estimated

the parameters in the model cdf using the maximum likelihood method and a

least squares technique.

The least squares estimates were obtained by regressing the model cdf

G(x;@) on the empirical cdf which in our case requires non-linear regression.

The empirical cdf may be defined as below

A 2i-I

F N(x) = 2N for x(i) 5 x X(i+l)

= 0 for x < x( 1 )

where x(i) is the i th order statistic. Now, the vector of parameters 0 is

estimated by selecting those values such that

S(G(x(i);0)-

is minimized.

Since the above minimization does not usually yield a linear system of normal

equations, the parameters must be estimated using non-linear techniques. We

used the linearization or Taylor series method which is described in Draper

and Smith (1966). There are a number of other possibly more efficient methods.

However the linearization method gave us good results with respect to computer

time, and it was easily programmed in SAS MATRIX. Most all non-linear techniques

I Often i/N is used in place of (2i-l)/N in the definition of FN (x). A more

general form is (i-c)/(n-2c+l), where the value of c depends on the distrib-
ution. The values of 0 and 3/8 are then used for the uniform and normal
distributions, respectively. For further details see Hahn and Shapiro (1967).
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require initial values to estimate the parameters. One method used when

0= (09,o ) was as follows: / 4o.

(i) Let x be the i
th order statistic such that I/N is between / ,

M0

.15 and .25, and let x be the th order statistic suchV

j/N is between .75 and .85. That is, select two order ...

statistics, one in the lower and one in the upper tail. 4 Q?,.

(ii) let G(x *; ,O) = i/N and "*r "
G(x0);,8

2 ) = j/N,

M i

and solve the system for 01 and 02-

This works in some cases such as the case when G(x;@) is the Weibull /

distribution.

The maximum likelihood estimate of 0 is the value of 0 which maximizes the

likelihood function L. Tf the probability density function for the distribution

is given by g(x,G), and xl,x 2, ... xN are N values chosen randomly from the

distribution, then L is given by

L = g(xl,e)g(x2,0)... g(xN,0)

The maximum likelihood estimate of 0 is usually obtained by differentiating

L with respect to 9, setting the resulting derivative equal to zero and solving

for the value of 0. For most distributions, tho solution is not straight forward

and is best obtained by the use of an iterative technique.

3.0 Comparison of Maximum Likelihood and Least Squares

Local and global errors were calculated as a means to compare the two

estimation techniques with respect to the underlying cdf. Let C be theP



value such that F(C ) = P. The local error for a specified value of P ioi

the jth sample is given by
A

dpi = G(C ;O ) - P.

We define errors E (local), E2 and E3 (global) as follows:

k
El(p) = j id j/k (The average local error at P over k samples)

k

E = Y (Maxld .1)/k

k
E3  Id pi I dj /Lk

j=l all p

where L is the number of values of p used.

For E2 and E3 the max and sum were taken over the grid {.01, .05, .1, .2,

.3, .4, .5, .6, .7, .8, .9, .95, .99}, and L, the cardinality of this set is

13. In all of the results reported in this paper k = 75. That is, the results

are based on 75 random samples of size N. N = 25 in all of the reported

results, however, we did use samplesof size 10 and 75, and observed the same

general )attern as that for samples of size 25.

3.1 Normal Model Used on Various Distributions

Table 3.1 compares the method of maximum likelihood and least squares when

the data is sampled (generated) from each of several different distributions

and the model used is the normal distribution. When the sample comes from the

normal, Laplace, rectangular, symmetric triangular and the Cauchy distribution.-,

the resilts are independent of the values of the parameters of the distribution.
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This is not the case for the Weibull and gamma. The forms we used are given by

F(x;a,B) 1 - c (Weibull)

F(X, x n-I -t
x tn e dt (gamma).

0

It is to be expected that for a normal distribution and a normal model,

the MLE would be superior. However the difference is small. For the logistic

distribution the two methlods differ little. For the rectangular and triangular

distributions, the MLE is superior, while for the Laplace and the Cauchy, the

LSE is superior. The superiority of the LSE is substantial in the case of the

Cauchy distribution.

The Weibull is well approximated by the normal when B is between 2 and 6,

as is the gamma distribution for large values of n (the skewness and kurtosis

of the gamma distribution are given by 2/1v and 3 + 6/n respectively). Because

of this it is not surprising that the MLE out-performs the LSE for the Weibull

(1,4) and gamma (9,2) and the LSE is superior for Weibull (1,1), gamma (3,3)

and gamma (2,1).

The difference between the two methods when the Cauchy distribution is the

true underlying distribution is illustrated in Figure 3.1. Figure 3.1 shows

the true cdf, (the Cauchy distribution), the empirical cdf, and the two normal

model cdf's using the MLE and LSE for v and a for a typical sample. This graph

shows the normal/LSE model giving a much closer approximation to the Cauchy

than the normal/MLE model.

3.2 Normal Model Used on the Mixture of Two Normals

Table 3.2 gives the results for the MLE and LSE when the data is from a

mixture of two different normal distributions. We use (l-v) and v to denote

m •i



the respective weights of N(O,1) and N(a,b) distributions.

When the means and variances of the two normal distributions differ but

little (that is when a is not far from zero and b is not far from !), there

is little difference between MLE and LSE. The LSE offers substantial

improvement when the two mixing normals differ more. Figure 3.2 illustrates

this with the graph of the mixture of two normals (.8 N(O,1) and .2 N(3,9)),

the empirical cdf, the normal/MLE, and the normal/LSE.

3.3 Normal Model Used on a Normal Distribution with Contamination

In this case the true underlying distribution is normal. however, some

of the data has been contaminated or altered in some way. This frequently

happens in actual case studies, and sometimes it is difficult to recognize the

altered information. This is different from the previous case in that the

true underlying distribution discussed in Section 3.2 is an actual mixing of

two distinct normals, and in this case the true underlying distribution is a

single normal distribution.

Table 3.3 gives the results for the two methods. The underlying distribution

is N(O,1) with a proportion v of the data altered. The altered observations

were assumed to be N(a,b). In practice the contamination may take other forms,

but the given alteration serves to illustrate the effects of contamination on

the estimation methods. It seems clear that the method of least squares gives

much better results than maximum likelihood even when only modest contamination

is present.

Figure 3.3 illustrates the difference between the two methods when a

N(,,l) distribution is contaminated (4%) with a M(O,9).
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It shoild be noted that the LS model appears to he very stahle under

contamination while the ML model seems quite sensitive to contamination.

3.4 Weibull Model Used on Weibiill Data With and Without Contamination

The samples were generated from a Weibull (2,6) population with a

proportion v of the data being "contaminated." The contamination was effected

by the transformation /b x + a. Table 3.4 compares the MLE and LSE for various

proportions of contamination and combinations of a and b. When v 0 0, i.e.,

there is no contamination, the MLE is slightly superior. For the three cases

where there is contamination, the LSE shows a definite superiority.
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E (Local FrrorsN

P E 2

F(x) .05 .5 .95

Normal ML .023 .070 .028 .0861 .0452

LS .027 .071 .031 .0926 .0479

Laplace ML .035 .074 .030 .129Q .0574
LS .036 .071 .032 .1148 I .0551

Rectangular ML .024 .076 .026 .1169 .0529

LS .041 .084 .046 .1235- .0602

Triangular ML .024 .077 .021 .0900 .0465+

(Symmetric) LS .030 .081 .028 .1001 .0519

Logi';t ic ML .029 .078 .030 .1024 .051L

LS .029 .080 .028 .1031 .0510

Cauchy ML .139 .077 .166 .2896 .1330
LS .049 .077 .048 .1279 .0606

Weibull (1,4) ML .025 .063 .025 .0799 .0418

LS .028 .070 .032 .0913 .0476

Weibull (1,I) ML .104 .126 .036 .1742 .0834

I'S .094 .093 .044 .1618 .0739

Gamma (9,2) ML .030 .071 .027 .0963 .0471

LS .034 .073 .031 .1011 .0497

Gamma (3,3) VI .047 .087 .031 .1184 .0565-

LS .049 .078 .036 .1160 .0557

Gamma (2,1) ML .064 .099 .033 .1337 .0638

LS .049 .084 .041 .1287 .0597

TABLE 3.1

A Comparison of Maximum Likelihood and Least Squares

Using the Normal Model
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E (Local Error)

'E2 3

v a b .05 .5 .95

.08 3 1 ML .033 .067 .026 .0940 .0458
LS .027 .073 .035 .0975 .0479

.20 3 1 ML .035 .080 .023 .1048 .0459
LS .035 .062 .034 .1011 .0450

.52 3 1 ML .020 .058 .027 .0917 .0386
LS .041 .034 .051 .0871 .0414

.08 3 9 ML .050 .071 .042 .1217 .0601
LS .028 .074 .032 .0980 .0489

.20 3 9 ML .071 .085 .031 .1555 .0700
LS .032 .067 .047 .1103 .0495

.52 3 9 ML .065 .110 .046 .1441 .0657
LS .069 .072 .033 .1284 .0554

.52 0 9 ML .055 .067 .057 .1132 .0608
i'S .031 .069 .037 .0956 .0498

.52 1/9 MI .028 .071 .033 .1260 .0536
LS .036 .072 .044 .1044 .0516

TABLE 3.2

A Comparison Between Maximum Likelihood and Least Squares

Using the Normal Model on Data from the Mixture of Two Normals



1 .ocI EtroI

v a. b .05, .

.098 2 W" II . i~9~ If)(
LS .028 .079 .04 . ' 6

. 21 M! .021 .129 .1 1 .1 7.' ( .091)0
LS .025 .1 1 100 .1 5,2 .0, 61

.08 3 1 ML .031 .089 .0, 7 .1 . 9
LS .027 . ORO .056 9U .0592

.20 3 1 M". .027 .1,55 .203 .24 - .12 2
LS .028 .122 .145 .18A2 .100O)

9 ,ML .051 .02 .107 .14/85 .0800o

LS ,03., .07 .0,'7 .192', .O540

.20 0 9 M. .102 .06, .102 .1583 n879
LS .04! .069 .Q54 .109f 0587

TABLE 3.3

A Comparis m of Maximum Likelihood and Least S;quares

Usi ng tc N!orrij1 Model on Contaminated N,,,.i, D)At.,
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E (Local Errors)

P E2
- 2 F.

v a b .05 .5 .95

.00 ML .022 .067 .025 .083 .043

LS .024 .070 .032 .092 .046

.08 1 1 ML .102 .063 .262 .262 .135

LS .023 .073 .057 .104 .056

.08 .5 2 M, .085 .062 .231 .233 .120

LS .023 .073 .057 .104 .056

.08 0 4 ML .086 .059 .225 .229 .118

LS .023 .073 .055 .103 .055

TABLE 3.4

A Comparison of Maximum Likelihood and Least Squares

Using the Weibull Model on Data

from a Weibull (2,6) with 100 v % Contamination



4.0 An Example of Fitting a Weibull Model to Visibility Data Usin _Maximum

Likelihood and Least Squares Techniques

Table 4.1 gives the empirical cdf, the Weibull/LSE fit, and the We bul'k".!

fit for visibility data at 10 a.m. in February at Mildenhall, England. Wt

were concerned with the estimation of P(X-x) where x is any positive real

number, and X is visibility in miles. The data was the result of approximately

ten years of observations. The object was to produce a simple formula from

which the probability of visibility events could be quickly evaluated. Such

a formula would "compact" the data, and be useful for simulation models.

The Weibull model had previously been used for a number of other location-

for various times of day and year. For the data in the table, the MIE and LSE

give very similar results. Because of its robust properties, we have preferred

the results from the LSE.

XMILES 0 , 5/161 5/8 3/4 1 11 1 2 2 3 4 5

OBSERVED
FREQUENCY .000 .031 .034 .047 .065 .081 .113 .152 .1.80 .247 .343 392 .453 .557 .6

LSE FIT .000 .027 .035 .059 .075 .091 .124 .156 .188 .251 .310 .366 .467 .555 6

MLI FIT .000 .027 .035 .059 .074 .090 .123 .154 .186 .247 .305 359 .459 .545 .l i

TABLE 4.1: The Empirical C.D.F., Weibul.l/LSE Fit, and the Weibull/MLE Fit for

Visibility at Mildenhall, England, February, 10 a.m.



5.0 Summary and Conclusions

The method of maximum likelihood and a least squares technique have

been compared under a variety of different situations when the purpose of

the estimation was to estimate the cdf. When the probabilistic model used

was correct or nearly correct the two methods produced very similar results

with the MLE usually slightly better. However, when the model used was wrong

or the data was contaminated, the least squares technique often gave

substantially better results.

Thus, it appears that the LSE are most useful when the underlying

probability distribution is not clearly established or when the sample

information has possible outliers. In these situations the LS model exhibits

a great deal more stability or robustness than the ML model.

The maximum likelihood method is frequently the only method used for

parameter estimation. Our results are in agreement with the statements of

Berkson (1980) and LeCam (1980) which point out that maximum likelihood

procedures should not be used exclusively without regard to the purposes for

which the estimates are required.
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